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Abstract

We present an approach to map utterances in conversation to logical forms, which
will be executed on a large-scale knowledge base. To handle enormous ellipsis phe-
nomena in conversation, we introduce dialog memory management to manipulate
historical entities, predicates, and logical forms when inferring the logical form of
current utterances. Dialog memory management is embodied in a generative model,
in which a logical form is interpreted in a top-down manner following a small and
flexible grammar. We learn the model from denotations without explicit annotation
of logical forms, and evaluate it on a large-scale dataset consisting of 200K dialogs
over 12.8M entities. Results verify the benefits of modeling dialog memory, and
show that our semantic parsing-based approach outperforms a memory network
based encoder-decoder model by a huge margin.

1 Introduction

We consider the problem of mapping conversational natural language questions to formal represen-
tations (e.g., logical form) of their underlying meanings, which would be executed to produce the
answer (denotation) [1–7]. We study the problem in a realistic setting that (1) only denotations are
available for model training while the underlying logical forms remain unknown, and (2) logical
forms will be executed on a large-scale knowledge base (KB) consisting of tens of millions of entities.
We believe that KB-based conversational question answering plays an important role in both search
engines and intelligent personal assistants (e.g., Siri, Alexa, Cortana/Xiaoice, and Google Now) [8]
to improve the ability of multi-turn question answering.

The major challenge of this task is how to interpret the meaning of an utterance in interaction where
ellipsis phenomena are frequently encountered. Let’s consider the example in Figure 1. The ellipsis
of the entity “he” in Q2 refers to “President of the United States” in Q1. The ellipsis of the entity “it”
in Q3 means the answer R2. In Q4, the ellipsis of the predicate (“yearEstablished”) comes from Q3.
We see that understanding the meaning of conversational utterances requires a good understanding of
dialog history. Another challenge is how to efficiently learn the semantic parser from denotations.
Online learning by searching legitimate logical forms requires repeated execution on a large-scale
knowledge base, which is extremely time-consuming and intolerable.

In this work, we regard the generation of a logical form as the prediction of a sequence of actions
[9, 10, 6, 11–16], each of which corresponds to a derivation rule in a simple and flexible grammar. We
introduce a generative model that interprets the logical form of an utterance in a top-down manner. A
grammar-guided decoder is developed to generate possible action sequences following the grammar.

∗Work done while this author was an intern at Microsoft Research.
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Q1: Where was the President of the United States born?

R3: 1881

Q2: Where did he graduate from?

R1:New York City

R2:Wharton School of the University of Pennsylvania

Q3: What year was it established?

R4: 1636
Q4: How about Harvard university?

Freebase

DBpedia

YAGO

NELL

OpenIE/ReVerb

Figure 1: An example illustrating the task of conversational question answering.

To cope with ellipsis phenomena in conversation, we introduce a dialog memory management
component that leverages historical entities, predicates, and action subsequences when generating the
logical form for a current utterance. To avoid the time-consuming procedure of repeatedly executing
on a large-scale knowledge base during training [6], we conduct a breadth-first-search algorithm in
advance to obtain pairs of utterances and their action sequences that lead to correct answers. The
model is learned by maximizing the likelihood of generating the expected action sequences [5, 11].

We conduct experiments on a large-scale dataset [17] for conversation question answering, which
consists of 200K dialogs with 1.6M turns over 12.8M entities from Wikidata. Compared to a memory
network enhanced encoder-decoder method [17], our semantic parsing-based approach achieves
better performance. We show the benefits of using dialog memory, and observe that our approach
performs well on those questions which rely on dialog contexts for resolving ellipsis phenomena.

2 Problem Statement

Our goal is to answer questions (utterances) in conversations based on a large-scale open-domain
knowledge base (KB). We tackle the problem in a semantic parsing manner that first maps the
question into executable logical forms, and then executes the generated logical form on a KB to
produce the answer. We would like to learn the semantic parser from denotations, having no luxury of
access to the annotated logical form for each utterance. Formally, let I be an interaction consisting of
n utterances/questions {q1, q2, ..., qn}2. During training, each question qi is paired with the correct
answer ai, without explicit annotation of the correct logical form zi. In the inference process, a
logical form z′i is derived based on the current question qi and its preceding questions {q1, q2, .., qi−1}.
Executing z′i on knowledge base K produces the outcome a′i.

3 Grammar

In this section, we describe the actions we define in this work for generating logical forms. A
summary of all the actions are given in Table 1.

Table 1: The base actions we use in this work for generating logical forms.

Action Operation Note
A1-A3 start→ set|num|bool

A4 set → find(set, r) set of entities with a r edge to e
A5 num → count(set) total number of set
A6 bool → in(e, set) whether e is in set
A7 set → union(set1, set2) union of set1 and set2
A8 set → inter(set1, set2) intersection of set1 and set2
A9 set → diff(set1, set2) instances included in set1 but not included in set2

A10 set → larger(set, r, num) subset of set linking to more than num entities with relation r
A11 set → less(set, r, num) subset of set linking to less than num with relation r
A12 set → equal(set, r, num) subset of set linking to num entities with relation r
A13 set → argmax(set, r) subset of set linking to most entities with relation r
A14 set → argmin(set, r) subset of set linking to least entities with relation r
A15 set → {e}

A16-A18 e|r|num → constant instantiation for entity e, predicate r or number num
A19-A21 set|num|bool → actioni−1 replicate previous action subsequence (w/o or w/ instantiation)

2We use the terms utterance and question interchangeably.
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Analogous to the meaning representation of [9], each action in this work consists of three components:
a semantic category, a function symbol which might be omitted, and a list of arguments. An argument
can be a semantic category, a constant, or an action subsequence. Take A5 for example: it has a
semantic category num, a function symbol count, and a semantic category set as the only argument.
We add A16-A18 to instantiate entity e, predicate r, and number num, respectively. We add A19-A21
for replicating a subsequence of previously predicated action sequence from the dialog memory. The
derivation of a logical form starts from the semantic category start. As derivation processes, the
model recursively rewrites the leftmost nonterminal (i.e semantic category) in the logical form by
applying a legitimate action. The parsing process terminates until no nonterminals remain.

4 Dialog-to-Action

We describe our semantic parsing-based model in this section. Based on sequence-to-sequence
learning [18, 19], the model takes a question and its context from interaction history as the input and
generates an action sequence. We develop a grammar-guided decoder to control the generation of an
action sequence, and a dialog memory management component to leverage historical contexts.

4.1 Encoder

Figure 2 illustrates an overview of the proposed model. Since previous questions and answer-
s/responses in conversation are useful contexts, we concatenate them with the current question as an
input x = (x1, ..., xT ). A bidirectional RNN with a gated recurrent unit (GRU) [20] is used as the
encoder to convert the input to a sequence of context vector. The forward RNN reads the input in
left-to-right direction, obtaining hidden states (

−→
h1, ...,

−→
hT ). The backward RNN reads reversely and

outputs (
←−
h1, ...,

←−
hT ). We then get the final representation (h1, ..., hT ) for each word in the source

sequence, where hj = [
−→
hj ;
←−
hj ]. The representation of the source sequence hx = ([

−→
hT ;
←−
h1]) is used as

initial hidden state of the decoder.

4.2 Grammar-guided Decoder

We use GRU with an attention mechanism as a decoder, which generates an action sequence a1, ..., an
in a sequential way. As we can see from Figure 2, the decoder parses the dialog to an action sequence,
which corresponds to the parsing tree shown in the lower right side. At each time-step t, we apply an
attention mechanism to obtain the context vector ct that is computed in the same way as [21]. The
concatenation of the context vector ct, the last hidden state sdect−1 and the embedding vt−1 of previously
predicted action is fed to the decoder to get the current hidden state sdect = GRU(sdect−1, vt−1, ct). If
the previously predicted action is an instantiated action, the embedding vt−1 is the representation
of the selected constant. The current hidden state sdect is used with the same attention mechanism
over the inputs to get the context vector sct . We then concatenate sdect and sct to get final hidden states
st. In order to generate a valid logical form, we incorporate an action-constrained grammar to filter
illegal actions. An action is legitimate if its left-hand semantic category is the same as the leftmost
nonterminal in the partial logical form parsed so far. We denote the set of legitimate actions at the
time step t as At = {a1, ..., aN}. The probability distribution over the set is calculated as Equation
1, where vi is the one-hot indicator vector for ai, Wa is model parameter, and a<t stands for the
preceding actions of the t-th time step.

p(ai|a<t, x) =
exp(vTi Wast)∑

aj∈At
exp(vTj Wast)

(1)

4.3 Dialog Memory

Interaction history is very important to generate the logical form of the following utterance. Therefore,
we incorporate a dialog memory to maintain information from interaction history. As illustrated in
Figure 2, the dialog memory includes three types of information, including entities, predicates, and
action subsequences. We describe these aspects one after another.

Entity We consider two types of entities from interaction history, coming from the previous question
utterance and the previous answer, respectively. The first type is suitable for a common co-reference
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Dialog Memory

Entity
{United States, tag=utterance}

{New York City, tag=answer}

Predicate 
{isPresidentOf}

{placeOfBirth}

Action

Subsequence

𝑠𝑒𝑡 → 𝐴4 𝐴15 𝑒𝑈𝑆 𝑟𝑝𝑟𝑒𝑠
𝑠𝑒𝑡 → 𝐴4 𝐴15
𝑠𝑒𝑡 → 𝐴4 𝐴4 𝐴15 𝑒𝑈𝑆 𝑟𝑝𝑟𝑒𝑠 𝑟𝑏𝑡ℎ
𝑠𝑒𝑡 → 𝐴4 𝐴4 𝐴15

Where did president of 

the United States born?
New York City

Where did he 

graduate from?

𝑟𝑔𝑟𝑎𝑑

𝑟𝑔𝑟𝑎𝑑

𝑒𝑛𝑑

𝐴4 𝐴19 𝐴4 𝐴15

𝐴19

𝑒𝑈𝑆 𝑟𝑝𝑟𝑒𝑠

replicated action sequence w/ instantiation

Previous Question Previous Answer Current Question 

S

set
A1

find(set, r1)

A4

graduateFrom

A17

find(set, r2)

A4

{e}

United States

A15

A16

isPresidentOf

A17

𝑆

𝐴1

𝐴1

𝐴4

copy

Figure 2: An illustration of the proposed approach. Our approach is the encoder-decoder structure
with dialog memory management component. The lower right side is a parsing tree corresponding to
the action sequence generated by the decoder.

case where the ellipsis entity comes from the previous utterance, such as “Q1 : Where was the
President of the United States born”, “Q2 : Where did he graduate from”. The second type is suitable
for the case in ellipsis entities comes from the previous answer, such as Q3 and R2 in Figure 1.

Predicate We record the predicates of the previous utterance. This is useful for the scenario where the
ellipsis of the predicate occurs. Let us take Q3 and Q4 from Figure 1 as an example. The predicate
“yearEstablished” is not explicitly expressed in Q4, yet mentioned in Q3.

Action Subsequences An action subsequence could be roughly categorized as instantiated or not.
Indeed, an action subsequence with instantiation stands for a full or a partial logical form. For
example, the first action subsequence in the dialog memory of Figure 2 is identical to the logical
form find(UnitedStates, isPresidentOf), which means the president of the United States. The
ellipsis of the entity “he” in the current question “Where did he graduate from?” actually refers to
the president of the United States. Therefore, the model executes an action (i.e. A19 ) to replicate the
first action subsequence. An action subsequence without instantiation conveys the soft pattern of a
logical form. For example, the current question “And how about China?” has the same soft pattern
as the previous question, but the country mentioned in the previous question should be replaced by

“China”.

For more details on establishment of the dialog memory, see Appendix A.

4.4 Incorporating Dialog Memory

In this section, we present our strategy to replicate contents from dialog memory as decoding
processes. This has an influence on A16 -A21, which we would list as follows.

Instantiation: We allow instantiated actions (i.e. A16 -A18 ) to access to the dialog memory when
the decoder instantiates an entity, predicate, or number. Taking entities as an example. Each entity is
assigned one of three tags: previous question, previous answer, or current question. The probability of
an entity et being instantiated at time-step t is calculated as Equation 2, where pg(·) is the probability
of the tag gt to be chosen, and pe(·) is the probability distribution over entities for each tag.

p(et|a<t, x) = pe(et|gt, a<t, x)pg(gt|a<t, x) (2)

The probability distribution of entities pe(·) is calculated as Equation 3, where ve is the embedding of
entity et, We is model parameter, and Egt is the set of entities having tag gt. The probability pg(·) is
implemented by a linear layer followed by a softmax function, and the input is st. The instantiations
of predicates and numbers are similar to entities, except that predicates have two kinds of tags (i.e.
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previous question and current question) and numbers have only one tag (i.e current question).

pe(et|gt, a<t, x) =
exp(vTe tanh(West))∑

e′∈Egt
exp(vTe′tanh(West))

(3)

Replication: The model learns to copy a previous action subsequence through choosing A19 -A21.
It has two modes that replicate instantiated or non-instantiated action subsequences. Figures 2
illustrates how the model replicates instantiated action subsequences. In order to obtain instantiated
action subsequences of the previous question, we parse the whole previous logical form to a tree and
enumerate all subtrees, each of which corresponds to an instantiated action subsequence. Another
mode will be described in appendix B. In our model, the probability of a subsequence to be copied is
calculated as Equation 4, where pm(·) is the probability of the mode mt to be chosen, and ps(·) is
the probability distribution over subsequences for each mode.

p(subt|a<t, x) = ps(subt|mt, a<t, x)pm(mt|a<t, x) (4)

The probability of copying the subsequence subt, namely ps(subt|mt, a<t, x), is calculated as
follows, where vsub is the representation of subt, and Emt

is the set of subsequences given mode mt.
vsub is obtained by encoding subt using a GRU. The calculation of pm(·) is analogous to pg(·).

ps(subt|mt, a<t, x) =
exp(vTsubtanh(Wsst))∑

si∈Emt
exp(vTsitanh(Wsst))

(5)

After replicating a subsequence action, the decoder clamps the generation of subsequence length by
continuously feeding the subsequence actions one by one. In the inference process, we obtain action
subsequences from the predicted logical form with the highest score. Error propagation might occur
when the model replicates an incorrect previous logical form, which hurts performance. Therefore,
we consider the score of action subsequence as a degree of confidence, which is calculated in the
same way as the probability of action subsequences without replication.

5 Learning and Inference

At the training phase, instances from training data are labeled with answers while action sequences
remain unknown. In order to train our model, we first generate action sequences for each example,
and then use an approximate marginal log-likelihood as the objective function. We use a breadth-
first-search algorithm from root to generate a set of action sequences Sa that are executed to the
correct answer. To cover the replication of action subsequences from dialog memory, we regard
action subsequences in Sa which appear in the dialog memory as replicated action subsequences.
In order to guarantee the quality of training instances with replication actions, we have a constraint
that at least one instantiated constant should be the same. The objective function is the sum of log
probabilities of actions, instantiations, and replications, where δ(ins, at) is 1 if at is an instantiation
action otherwise 0, and δ(rep, at) is the same as δ(ins, at), where rep means a replication action.

loss = −
∑
t

logp(at|a<t, x)−
∑
t

δ(ins, at)logp(et|a<t, x)−
∑
t

δ(rep, at)logp(subt|a<t, x)

(6)
We use beam search at the inference phase. For more details on the training and inference procedures
used in the experiments, see Appendix C.

6 Experiment

We conduct the experiment on the CSQA dataset3. The dataset is created based on Wikidata4,
including 152K dialogs for training, and 16K/28K dialogs for development/testing. Questions in
dialogs are classified as kinds of types, examples of which are shown in Figure 3. We use the same
evaluation metrics employed in [17]. Precision and recall are used as evaluation metrics for questions
whose answers are entities, which measures the percentage of correct entities in the output and
the percentage of correct entities that are retrieved, respectively. Accuracy is used to measure the
performance for questions which produce boolean and numerical answers.

3https://amritasaha1812.github.io/CSQA/
4https://www.wikidata.org
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Table 2: Performance of different approaches on the CSQA dataset.

Methods HRED+KVmem ContxIndp-SP D2A
Question Type Recall Precision Recall Precision Recall Precision
Overall 18.40% 6.30% 42.18% 40.88% 64.04% 61.76%
Simple Question (Direct) 33.30% 8.58% 94.04% 88.32% 93.67% 89.26%
Simple Question (Co-referenced) 12.67% 5.09% 40.29% 38.55% 71.31% 68.41%
Simple Question (Ellipsis) 17.30% 6.98% 14.09% 13.28% 86.58% 77.85%
Logical Reasoning (All) 15.11% 5.75% 36.23% 35.91% 42.49% 44.82%
Quantitative Reasoning (All) 0.91% 1.01% 43.75% 49.91% 48.59% 52.03%
Comparative Reasoning (All) 2.11% 4.97% 41.49% 38.91% 44.73% 43.69%
Clarification 25.09% 12.13% 0.01% 0.01% 19.36% 17.36%
Question Type Accuracy Accuracy Accuracy
Verification (Boolean) 21.04% 20.38% 45.05%
Quantitative Reasoning (Count) 12.13% 30.60% 40.94%
Comparative Reasoning (Count) 8.67% 15.54% 17.78%

6.1 Model Comparisons

Table 2 shows the results of different methods on CSQA data. HRED+KVmem [17] is a sequence-
to-sequence learning method, which uses a hierarchical encoder and a key-value memory network
[22] to compute the representation for the question and its contexts, and then uses an RNN as
the decoder to directly produce answers. To demonstrate the effectiveness of dialog memory, we
implement a context-independent semantic parser ContxIndp-SP, in which the dialog memory is
totally removed from the full Dialog-to-Action model. Our full model is abbreviated as D2A (short
for Dialog-to-Action).

Our approach is a semantic parsing based method, which explicitly manipulates the actions/functions
and lets the Seq2Seq model learn how these actions are used to derive the logical form of the question.
It could naturally leverage parsed results of previous turn including entities, predicates and action
subsequences to handle various ellipsis phenomena. HRED+KVmem is a text generation based
approach that puts the entire burden of doing reasoning and compositionality to the Seq2Seq model,
which struggles at handling all these problems in an implicit way. Results demonstrate that namely
semantic parsing approach is more effective to handle complex questions, including quantitative,
comparative and logical reasoning. We can also see that incorporating the dialog memory brings
significant improvements in co-referenced and ellipsis categories. The results also show that the
dialog memory is very important to handle ellipsis phenomena in conversation.

6.2 Model Analysis

We conduct ablation analysis to better understand how various components in the dialog memory
impact overall performance. We remove entity memory (EM), predicate memory (PM) and action
subsequence memory (AM), respectively, to analyze their contribution.

Table 3: Performance of different approaches on the CSQA dataset. EM, PM and AM stand for
entities, predicates, and subsequent action sequences from dialog memory, respectively.

Methods D2A w/o EM D2A w/o PM D2A w/o AM
Question Type Recall Precision Recall Precision Recall Precision
Overall 44.93% 44.13% 57.52% 56.20% 64.02% 62.85%
Simple Question (Direct) 93.09% 88.59% 93.39% 88.76% 93.55% 88.63%
Simple Question (Co-referenced) 37.95% 36.54% 70.42% 67.89% 73.36% 72.01%
Simple Question (Ellipsis) 81.82% 76.69% 15.35% 13.73% 85.96% 80.44%
Logical Reasoning (All) 40.85% 42.76% 38.20% 42.37% 38.69% 40.11%
Quantitative Reasoning (All) 43.87% 52.16% 44.18% 48.30% 43.57% 50.89%
Comparative Reasoning (All) 42.47% 44.74% 39.40% 38.58% 41.95% 43.65%
Clarification 1.44% 1.79% 0.86% 1.11% 17.76% 16.16%
Question Type Accuracy Accuracy Accuracy
Verification (Boolean) 18.44% 47.92% 50.84%
Quantitative Reasoning (Count) 38.89% 34.04% 39.14%
Comparative Reasoning (Count) 16.51% 15.38% 16.79%
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Table 3 shows that the recall and precision of co-referenced questions drop from ∼70% to ∼37%
when ablating entity memory (D2A w/o EM), which reveals the importance of entity memory
in a co-referenced scenario. We can see that the accuracy of verification questions drops from
45.05% to 18.44%, which means this type of question also needs information on entities from history
interaction. After removing the predicate memory, the model (D2A w/o PM) performs poorly in
ellipsis questions, dropping from ∼80% to ∼15%. This is consistent with our intuition that the
predicate of an ellipsis question comes from the previous question. Results show that removing action
subsequence memory (D2A w/o AM) hurts the performance on complex questions including logical
reasoning and quantitative reasoning. After analyzing examples of these two types, we observe that
ellipsis and co-reference phenomena occur in complex questions, the understanding of which needs
to copy complex logical form from previous questions.

To better understand the ability of our semantic parser, we show examples to illustrate the parsing
results by our approach (D2A) in Figure 3. As shown, our parser is capable of parsing various types
of questions. The 2nd and 3rd examples show that the dialog memory helps the parser replicate
entity and predicate from history interaction. Furthermore, replication actions work well in complex
questions such as 8th and 9th examples, where previous un-instantiated action subsequences are
replicated and instantiation follows.

id question type current question + previous turn predicted logical form

1
Simple Question 

(Direct)

Q1: N/A                 R1: N/A

Q2: Who was the dad of Jorgen Ottesen Brahe?
𝑓𝑖𝑛𝑑({𝐽𝑜𝑟𝑔𝑒𝑛 𝑂𝑡𝑡𝑒𝑠𝑒𝑛 𝐵𝑟𝑎ℎ𝑒}, 𝑓𝑎𝑡ℎ𝑒𝑟)

2
Simple Question 

(Coreferenced)

Q1: Who was the dad of Jorgen Ottesen Brahe?

R1: Otte Brahe

Q2: Who is the spouse of that one?

𝑓𝑖𝑛𝑑({𝑂𝑡𝑡𝑒 𝐵𝑟𝑒ℎ𝑒}, 𝑠𝑝𝑜𝑢𝑠𝑒)

3
Simple Question 

(Ellipsis)

Q1: What is the profession of Mkihail Beliaiev?

R1: Military personnel

Q2: And also tell me about Brett MacLean

𝑓𝑖𝑛𝑑({𝐵𝑟𝑒𝑡𝑡 𝑀𝑎𝑐𝐿𝑒𝑎𝑛}, 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛)

4
Logical Reasoning 

(All)

Q1: N/A                 R1: N/A

Q2: Which administrative territories have diplomatic 

relations with Italy and are not Derikha present in?

𝑎𝑛𝑑( 𝑑𝑖𝑓𝑓( 𝑓𝑖𝑛𝑑({𝐼𝑡𝑎𝑙𝑦}, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑑𝑖𝑝𝑙𝑜𝑚𝑎𝑡𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)),
𝑓𝑖𝑛𝑑 𝐷𝑒𝑟𝑖𝑘ℎ𝑎 , 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ),
𝑓𝑖𝑛𝑑 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒 𝑡𝑒𝑟𝑟𝑖𝑡𝑜𝑟𝑖𝑒𝑠 , 𝑖𝑠𝐴 )

5
Quantitative 

Reasoning

Q1: N/A                 R1: N/A

Q2: Which works did min number of people do the 

dubbing for?

𝑎𝑟𝑔𝑚𝑖𝑛(𝑓𝑖𝑛𝑑({𝑣𝑜𝑖𝑐𝑒 𝑎𝑐𝑡𝑜𝑟}, 𝑖𝑠𝑎), 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑤𝑜𝑟𝑘) )

6
Comparative 

Reasoning 

Q1: N/A                 R1: N/A

Q2: Which musical instruments are played by more 

number of people than electronic keyboard?

𝑙𝑎𝑟𝑔𝑒𝑟(𝑓𝑖𝑛𝑑({𝑚𝑢𝑠𝑖𝑐𝑎𝑙 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠}, 𝑖𝑠𝐴) ,
𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 , 𝑐𝑜𝑢𝑛𝑡(𝑎𝑛𝑑(
𝑓𝑖𝑛𝑑({𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 𝑘𝑒𝑦𝑏𝑜𝑎𝑟𝑑}, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡)),
𝑓𝑖𝑛𝑑({𝑝𝑒𝑜𝑝𝑙𝑒}, 𝑖𝑠𝐴)) ))

7
Verification

(Boolean)

Q1: N/A                 R1: N/A

Q2: Is Arizona Coyotes present in United States of 

America?

𝑖𝑛(𝐴𝑟𝑖𝑧𝑜𝑛𝑎 𝐶𝑜𝑦𝑜𝑡𝑒𝑠 ,
𝑓𝑖𝑛𝑑({𝑈𝑛𝑖𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑠 𝑜𝑓 𝐴𝑚𝑒𝑟𝑖𝑐𝑎}, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑐𝑜𝑢𝑛𝑡𝑟𝑦) ))

8

Quantitative 

Reasoning 

(Count)

Q1: How many people have birthplace at Provence?   

R1: 15

Q2: And how about Peterborough?

𝑐𝑜𝑝𝑦( 𝑐𝑜𝑢𝑛𝑡(
𝑓𝑖𝑛𝑑({𝑃𝑒𝑡𝑒𝑟𝑏𝑜𝑟𝑜𝑢𝑔ℎ}, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 𝑏𝑖𝑟𝑡ℎ )))

9

Comparative 

Reasoning 

(Count)

Q1: How many musical instruments are played by 

greater number of people than Body percussion ?                   

R1: 30

Q2: And also tell me about timpani?

𝑐𝑜𝑝𝑦(𝑐𝑜𝑢𝑛𝑡( 𝑙𝑎𝑟𝑔𝑒𝑟( 𝑓𝑖𝑛𝑑({𝑚𝑢𝑠𝑖𝑐𝑎𝑙 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡}, 𝑖𝑠𝐴),
𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡) ,
𝑐𝑜𝑢𝑛𝑡( 𝑓𝑖𝑛𝑑( {𝑡𝑖𝑚𝑝𝑎𝑛𝑖} , 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡)) ) ) ))

Figure 3: Examples of the parsing results of D2A. Q1, R1 and Q2 stand for previous utterance,
previous answer and current question, respectively; copy() stands for one of the action from A19-A21
that replicates previous action subsequence; reverse() is a specific function that could be applied on
any predicate, resulting in doubled predicates.

6.3 Discussion

To understand the limitations of our approach and shed light on future directions to make further
improvements, we randomly select 100 wrongly predicted instances for each category, and summary
four main classes of errors as follows.

Entity Linking. A common problem is entity linking error when different entities have exactly the
same surface name. Based on a balance between accuracy and latency, we represent an entity based
on the words it contains in this work, so that there’s no difference in their representation. A potential
way to alleviate this problem is to learn better word representations by considering the contexts from
a knowledge graph [23, 24].

Spurious Program. We collect referenced action sequence in an automatic way based on an
assumption that a logical form is correct if it could be executed to the correct answer. However, some

7



of these logical forms are spurious [5], in the sense that they do not represent the meaning of question
but get the correct answer. Filtering rules might be useful to filter out spurious logical forms.

Error Propagation. The problem of error propagation occurs because our model learns to replicate
previously generated action sequences, which might be incorrect despite we consider the probability
of the previous logical form. The problem might be alleviated if we incorporate more signals to
measure the correctness of a logical form.

Unsupported Actions. There exist examples whose logical forms could be not covered by our
grammar. An example is “How many political and administrative territories have diplomatic
relationships with France?”, whose answer is “3 and 15”. Incorporating more actions might improve
the coverage, however, the aim of this paper is not to explore dataset-specific grammar, but to show
that a flexible grammar works well and dialog memory helps.

7 Related Work

Our task closely relates to two lines of works on content-dependent semantic parsing, categorized by
the type of supervision used for model learning.

The first line of work learns a context-dependent semantic parser from fully annotated logical forms.
[1] first learn a context-independent CCG parser, and then conduct context-dependent substitution and
elaboration. [3] produce logical forms using a set of classification models. [7] propose a sequence-to-
sequence model with a copying mechanism to replicate previously generated logical form. The main
difference between our task and this line of work is that we learn from denotations with no access to
annotated logical forms.

The second line of work learns a model from denotations, which could be the answer [6] or the final
world state [4]. [2] jointly learn a weighted CCG parser and execute spatial/instructional language in
navigation environments. [4] develop a shift-reduce parser and use model projection to reduce the
search space. [5] generate tokens of action, constant, and function with a sequence-to-sequence model,
and use meritocratic gradient weights and randomized beam search to alleviate the spurious program
problem. [25] mapping context-sequential instructions to actions sequence, and propose a learning
algorithm that take advantage of single-step reward observations and immediate expected reward
maximization. [6] regard SQL generation as action sequence prediction, and search legitimate action
sequences through online learning. A special “subsequent” action is defined to replicate the entire
SQL query of the previously contiguous utterance. Generated SQL query will be executed on a web
table to produce the answer. Similar to [6], our definitions of action and structure constraint depend
on the language of the target logical form. Compared to their method that only learns to replicate
the entire logical form of previous utterance, our model is more flexible and capable of replicating
various information from dialog memory including entities, predicates, and action subsequences
(i.e. partial logical forms). Our task differs from this line of work in that our logical forms interact
with a large-scale knowledge base, which poses new challenges for model training. There also exist
memory or encoder-decoder based methods [17, 26, 27] that directly generate an answer utterance as
the output of the decoder. Our semantic parsing-based model is essentially different from them in
that deep question understanding is required to produce the explicit logical form of the underlying
meaning. Our task differs from the “QA+recommendation dialog” task [28, 29] in that they only ask
question in the second turn, the intention of which is about the recommended entity of the first turn.

8 Conclusion

We present the Dialog-to-Action, a generative model that converts an utterance in conversation to a
logical form, which will be executed on a large-scale knowledge base to produce the answer. The
model works in a top-down manner following a small and flexible grammar, in which the generation of
a logical form is equivalent to the prediction of a sequence of actions. A dialog memory management
is developed and naturally integrated in the model, so that historical entities, predicates, and action
subsequences could be selectively replicated. The model is effectively learned from denotations
without using annotated logical forms. Results on a large-scale dataset demonstrate the effectiveness
of considering the dialog memory, and show that our model performs significantly better than a strong
memory network-based encoder-decoder model.
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